Directions: You have 120 minutes to answer the following questions. You must show all your work as neatly and clearly as possible and indicate the final answer clearly. You may use a calculator.

Note: For the last two problems, please only pick one to do. Indicate the one that you do not wish to be graded on the following table.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
(1) (20 points) Fill in the blanks:

(a) Let \(X_1, X_2, \ldots, X_9 \) be a random sample from the normal distribution \(N(-5, 9) \). Find \(a \) such that
\[P(\overline{X} > a) = 0.95. \]

Answer: \(a = \) _______________.

(b) Let \(X_1, X_2, \ldots, X_{15} \) be a random sample from the normal distribution \(N(30, 100) \). Find \(b \) such that
\[P(\sum_{i=1}^{15}(X_i - \overline{X})^2 \leq b) = 0.99. \]

Answer: \(b = \) _______________.

(c) In a public opinion poll for a close presidential election, let \(p \) denote the proportion of voters who favor candidate A. How large a sample should be taken if we want the maximum error of the estimate of \(p \) to be equal to 0.03 with 95% confidence?

Answer: ____________.

(d) Let \(X \) equal excess weight of soap in a 1000-gram bottle. Assume that the distribution of \(X \) is \(N(\mu, 169) \). What sample size is required so that we have 95% confidence that the maximum error of the estimate of \(\mu \) is 1.5?

Answer: ____________
(2) (15 points) A test was conducted to determine if a wedge on the end of a plug fitting designed to hold a seal onto the plug was doing its job. The data taken were in form of measurements of the force required to remove a seal from the plug first with the wedge in place, say, X, and then the force required without the wedge, say, Y. Assume that the distribution of X and Y are $N(\mu_X, \sigma^2)$ and $N(\mu_Y, \sigma^2)$, where the 2 distributions have the equal variance σ^2.

Six independent observations of X are:

$3.26, \ 2.26, \ 2.62, \ 2.36, \ 3.00, \ 2.62 \ (\bar{x} = 2.69, \ s_x = 0.38)$

Six independent observations of Y are:

$1.90, \ 1.46, \ 1.54, \ 1.32, \ 1.56, \ 2.00 \ (\bar{y} = 1.63, \ s_y = 0.26)$

(a) Find a 95% confidence interval for $\mu_X - \mu_Y$.

(b) Is the wedge necessary? Explain briefly.
(3) (15 points) Let \(X \) equal the forced vital capacity (FVC) in liters for a female college student. Assume that the distribution of \(X \) is approximately \(N(\mu, \sigma^2) \). Suppose it is known that \(\mu = 3.4 \) liters. A volleyball coach claims that the FVC of volleyball players is greater than 3.4 liters. She plans to test \(H_0 : \mu = 3.4 \, \text{vs} \, H_1 : \mu > 3.4 \) using a random sample of size \(n = 9 \).

(a) Define a rejection region for which \(\alpha = 0.05 \).

(b) Given that the random sample yielded the following FVC:

\[
3.4 \ 3.6 \ 3.8 \ 3.3 \ 3.4 \ 3.5 \ 3.6 \ 3.7 \ 3.7 \ (\bar{x} = 3.556, \ s = 0.167)
\]

What is your conclusion?

(c) What is the approximate \(p \)-value of this test?
(4) (15 points) A company manufactures machines to package soap powder. The mean and variance of a sample of eight 3-ounce boxes were found to be 3.15 and 0.02, respectively.

(a) Test the hypothesis that the variance of the population of weight measurements is $\sigma^2 = 0.01$ against the alternative $\sigma^2 > 0.01$. Please state the test statistics, rejection region, and your conclusion clearly. Use an $\alpha = 0.05$ level of significance.

(b) What assumptions are required for this test you used?
(5) (15 points) The proportion of adults living in a small town who are college graduates is claimed to be \(p = 0.4 \). To test this claim, a random sample of 15 adults is selected. If the number of college graduates in our sample is anywhere from 4 to 8, we will accept the null hypothesis that \(p = 0.4 \); otherwise, we shall conclude that \(p \neq 0.4 \).

(a) Use the binomial distribution to evaluate the type I error \(\alpha \).

(b) Evaluate type II error \(\beta \) for the alternative hypothesis \(p = 0.15 \).

(c) Suppose 200 adults are selected and the acceptance region for \(H_0 \) is defined to be \(70 \leq x \leq 90 \), where \(x \) is the number of college graduates in the sample. Please use normal distribution to approximate the type II error \(\beta \) for the alternative hypothesis \(p = 0.15 \).
(6) (10 points) A random sample of size 36 is taken from the distribution with p.d.f.
\[f(x) = 1 - \frac{x}{2}, \quad 0 \leq x \leq 2. \]

(a) Find \(\mu \) and \(\sigma^2 \) of this distribution.

(b) Find, approximately, \(P(2/3 < \bar{X} < 5/6) \).
You only need to do one of the following 2 problems. Please cross out (on the cover page) the problem that you don’t wish to be graded, either Problem 7 or Problem 8.

(7) (10 points) Let \(X_1, X_2, \ldots, X_n \) be a random sample of size \(n \) from the uniform distribution on the interval \([\theta, 1]\), i.e., with p.d.f.

\[
f(x; \theta) = \begin{cases}
\frac{1}{1-\theta} & \theta \leq x \leq 1; \\
0 & \text{elsewhere}.
\end{cases}
\]

(a) Find the maximum likelihood estimator of \(\theta \).

(b) (Numerical Application) Based on the following sample, give a point estimate of \(\theta \).

0.77, 0.30, 0.90, 0.45, 0.62.
(8) (10 points) Let X_1, X_2, \ldots, X_n denote a random sample of size n from a distribution with p.d.f.

$$f(x; \theta) = \begin{cases}
\left(\frac{2}{\theta^2}\right) (\theta - x), & \text{for } 0 \leq x \leq \theta, \\
0, & \text{otherwise.}
\end{cases}$$

Find the method of moments estimator for θ.
Answers:

(1) Problem 1:
 (a) -6.645
 (b) 2914
 (c) 1068
 (d) 289

(2) Problem 2:
 (a) (0.64, 1.48)
 (b) Yes

(3) Problem 3:
 (a) $C = \{ t(8) > 1.86 \} = \{ \bar{X} > 3.4 + 0.62S \}$
 (b) $t_{obs} = 2.80$, Reject H_0
 (c) p-value ≈ 0.01

(4) Problem 4:
 (a) Can’t reject H_0.
 (b) The underlying distribution is normal.

(5) Problem 5:
 (a) 0.186
 (b) 0.177
 (c) ≈ 0

(6) Problem 6:
 (a) $\mu = 2/3, \sigma^2 = 2/9$
 (b) 0.483

(7) Problem 7:
 (a) $\hat{\theta}_{mle} = X_{(1)}$, the minimum of all X_1, X_2, \ldots, X_n.
 (b) 0.3

(8) Problem 8:
 $\hat{\theta}_{mom} = 3\bar{X}$